Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 14(1): 5945, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741832

RESUMO

Microsatellite-stable colorectal cancer (MSS-CRC) is highly refractory to immunotherapy. Understanding tumor-intrinsic determinants of immunotherapy resistance is critical to improve MSS-CRC patient outcomes. Here, we demonstrate that high tumor expression of the core autophagy gene ATG16L1 is associated with poor clinical response to anti-PD-L1 therapy in KRAS-mutant tumors from IMblaze370 (NCT02788279), a large phase III clinical trial of atezolizumab (anti-PD-L1) in advanced metastatic MSS-CRC. Deletion of Atg16l1 in engineered murine colon cancer organoids inhibits tumor growth in primary (colon) and metastatic (liver and lung) niches in syngeneic female hosts, primarily due to increased sensitivity to IFN-γ-mediated immune pressure. ATG16L1 deficiency enhances programmed cell death of colon cancer organoids induced by IFN-γ and TNF, thus increasing their sensitivity to host immunity. In parallel, ATG16L1 deficiency reduces tumor stem-like populations in vivo independently of adaptive immune pressure. This work reveals autophagy as a clinically relevant mechanism of immune evasion and tumor fitness in MSS-CRC and provides a rationale for autophagy inhibition to boost immunotherapy responses in the clinic.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Feminino , Humanos , Camundongos , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Genes Reguladores , Fígado , Ensaios Clínicos Fase III como Assunto
2.
Nat Commun ; 14(1): 4703, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543621

RESUMO

TGFß signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFß signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFß and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFß/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFß therapy efficacy. Our data suggest that TGFß works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Fator de Crescimento Transformador beta , Feminino , Animais , Camundongos , Diferenciação Celular , Linfócitos T CD8-Positivos/imunologia , Células-Tronco , Antígeno B7-H1/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Interferon gama/imunologia , Exaustão das Células T , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , RNA-Seq
3.
Methods Mol Biol ; 2660: 171-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191797

RESUMO

Multiplex ion beam imaging (MIBI) and imaging mass cytometry (IMC) enable highly multiplexed antibody (40+) staining of frozen or formalin fixed, paraffin-embedded (FFPE) human or murine tissues through detection of metal ions liberated from primary antibodies by time-of-flight mass spectrometry (TOF). These methods make detection of more than 50 targets theoretically possible while maintaining spatial orientation. As such, they are ideal tools to identify the multiple immune, epithelial, and stromal cell subsets in the tumor microenvironment and to characterize spatial relationships and tumor-immune status in either murine models or human samples. This chapter summarizes methods for antibody conjugation and validation, staining, and preliminary data collection using IMC or MIBI in both human and mouse pancreatic adenocarcinoma samples. These protocols are intended to facilitate use of these complex platforms in not only tissue-based tumor immunology studies but also tissue-based oncology or immunology studies more broadly.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Camundongos , Humanos , Animais , Microambiente Tumoral , Espectrometria de Massas/métodos , Diagnóstico por Imagem , Inclusão em Parafina/métodos , Formaldeído/química , Fixação de Tecidos/métodos
4.
Cell Rep Med ; 4(1): 100878, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36599350

RESUMO

Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone. Circulating CTLs from cancer patients with high plasma IL-6 display a repressed functional profile based on single-cell RNA sequencing, and IL-6-STAT3 signaling inhibits classical cytotoxic differentiation of CTLs in vitro. In tumor-bearing mice, CTL-specific IL6R deficiency is sufficient to improve anti-PD-L1 activity. Thus, based on both clinical and experimental evidence, agents targeting IL-6 signaling are plausible partners for combination with ICIs in cancer patients.


Assuntos
Antineoplásicos , Interleucina-6 , Neoplasias , Animais , Camundongos , Antineoplásicos/uso terapêutico , Antígeno B7-H1/imunologia , Antígeno B7-H1/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Interleucina-6/metabolismo , Neoplasias/imunologia , Neoplasias/terapia
5.
Eur J Nucl Med Mol Imaging ; 50(2): 287-301, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271158

RESUMO

BACKGROUND: ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1]. METHODS: Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data. RESULTS: ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents. CONCLUSION: 89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.


Assuntos
Neoplasias , Tomografia por Emissão de Pósitrons , Adulto , Humanos , Camundongos , Ratos , Animais , Tomografia por Emissão de Pósitrons/métodos , Indicadores e Reagentes/uso terapêutico , Distribuição Tecidual , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Zircônio/química , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral
7.
MAbs ; 14(1): 2115213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206404

RESUMO

T cell-engaging bispecific antibodies (TCEs) are clinically effective treatments for hematological cancers. While the utility of TCEs in solid malignancies is being explored, toxicities arising from antigen expression on normal tissues have slowed or halted several clinical trials. Here, we describe the development of TCEs that preferentially drive T cell-mediated death against target cells co-expressing two tumor-associated antigens. We show that Ly6E and B7-H4 are simultaneously expressed on approximately 50% of breast cancers, whereas normal tissue expression is limited and mostly orthogonal. Traditional bispecific TCEs targeting a singular antigen, either Ly6E or B7-H4, are active when paired with high-affinity CD3-engagers, but normal tissue expression presents a toxicity risk. Treatment with a murine cross-reactive B7-H4-TCE results in rapid and severe weight loss in mice along with damage to B7-H4-expressing tissues. To overcome on-target toxicity, we designed trispecific antibodies co-targeting Ly6E, B7-H4, and CD3 and characterized the impact of dual-antigen binding and the relative placement of each binding domain on tumor killing in vitro and in vivo. In vitro killing of tumor cells co-expressing both antigens correlates to the placement of the higher affinity B7-H4 binding domain, with only modest enhancements seen upon addition of Ly6E binding. In xenograft models, avid binding of appropriately designed trispecific TCEs enables tumor growth inhibition while evading the poor tolerability seen with active bispecific TCEs. Collectively these data highlight the potential for dual-antigen targeting to improve safety and efficacy, and expand the scope of tumors that may effectively be treated by TCEs.Abbreviations: Chimeric antigen receptor T cells (CAR-Ts), dual-antigen targeted T cell engagers (DAT-TCE), Fragment antigen-binding (Fab), Hematoxylin and eosin (H&E), Institutional Animal Care and Use Committee (IACUC), Immunoglobulin G (IgG), immunohistochemistry (IHC), NOD SCID gamma (NSG), peripheral blood mononuclear cells (PBMCs), surface plasmon resonance (SPR), T cell-engagers (TCEs).


Assuntos
Anticorpos Biespecíficos , Receptores de Antígenos Quiméricos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Imunoglobulina G , Leucócitos Mononucleares , Camundongos , Camundongos SCID , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nature ; 611(7934): 148-154, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36171287

RESUMO

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Proteínas de Membrana , Miofibroblastos , Neoplasias Pancreáticas , Células Estromais , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Antígeno B7-H1
9.
J Immunol ; 208(12): 2632-2642, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35675956

RESUMO

Genetic and environmental cues shape the evolution of the B cell Ig repertoire. Activation-induced cytidine deaminase (AID) is essential to generating Ig diversity through isotype class switching and somatic mutations, which then directly influence clonal selection. Impaired B cell development in AID-knockout mice has made it difficult to study Ig diversification in an aging repertoire. Therefore, in this report, we used a novel inducible AID-knockout mouse model and discovered that deleting AID in adult mice caused spontaneous germinal center formation. Deep sequencing of the IgH repertoire revealed that Ab diversification begins early in life and evolves over time. Our data suggest that activated B cells form germinal centers at steady state and facilitate continuous diversification of the B cell repertoire. In support, we identified shared B cell lineages that were class switched and showed age-dependent rates of mutation. Our data provide novel context to the genesis of the B cell repertoire that may benefit the understanding of autoimmunity and the strength of an immune response to infection.


Assuntos
Citidina Desaminase , Switching de Imunoglobulina , Animais , Linfócitos B , Citidina Desaminase/genética , Centro Germinativo , Switching de Imunoglobulina/genética , Camundongos , Camundongos Knockout , Hipermutação Somática de Imunoglobulina
10.
Eur J Cancer ; 170: 179-193, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660252

RESUMO

BACKGROUND: The clinical development of immune checkpoint-targeted immunotherapies has been disappointing so far in paediatric solid tumours. However, as opposed to adults, very little is known about the immune contexture of paediatric malignancies. METHODS: We investigated by gene expression and immunohistochemistry (IHC) the immune microenvironment of five major paediatric cancers: Ewing sarcoma (ES), osteosarcoma (OS), rhabdomyosarcoma (RMS), medulloblastoma (MB) and neuroblastoma (NB; 20 cases each; n = 100 samples total), and correlated them with overall survival. RESULTS: NB and RMS tumours had high immune cell gene expression values and high T-cell counts but were low for antigen processing cell (APC) genes. OS and ES tumours showed low levels of T-cells but the highest levels of APC genes. OS had the highest levels of macrophages (CSF1R, CD163 and CD68), whereas ES had the lowest. MB appeared as immune deserts. Tregs (FOXP3 staining) were higher in both RMS and OS. Most tumours scored negative for PD-L1 in tumour and immune cells, with only 11 of 100 samples positive for PD-L1 staining. PD-L1 and OX40 levels were generally low across all five indications. Interestingly, NB had comparable levels of CD8 by IHC and by gene expression to adult tumours. However, by gene expression, these tumours were low for T-cell cytotoxic molecules GZMB, GZMA and PRF1. Surprisingly, the lower the level of tumour infiltrative CD8 T-cells, the better the prognosis was in NB, RMS and ES. Gene expression analyses showed that MYCN-amplified NB have higher amounts of immune suppressive cells such as macrophages, myeloid-derived suppressor cells and Tregs, whereas the non-MYCN-amplified tumours were more infiltrated and had higher expression levels of Teff. CONCLUSIONS: Our results describe the quality and quantity of immune cells across five major paediatric cancers and provide some key features differentiating these tumours from adult tumour types. These findings explain why anti-PD(L)1 might not have had single agent success in paediatric cancers. These results provides the rationale for the development of biologically stratified and personalised immunotherapy strategies in children with relapsing/refractory cancers.


Assuntos
Neoplasias Ósseas , Neuroblastoma , Osteossarcoma , Rabdomiossarcoma , Sarcoma de Ewing , Antígeno B7-H1/metabolismo , Criança , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Neuroblastoma/genética , Prognóstico , Rabdomiossarcoma/patologia , Microambiente Tumoral
11.
Nat Immunol ; 23(4): 568-580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35314846

RESUMO

Tumor-associated macrophages are composed of distinct populations arising from monocytes or tissue macrophages, with a poorly understood link to disease pathogenesis. Here, we demonstrate that mouse monocyte migration was supported by glutaminyl-peptide cyclotransferase-like (QPCTL), an intracellular enzyme that mediates N-terminal modification of several substrates, including the monocyte chemoattractants CCL2 and CCL7, protecting them from proteolytic inactivation. Knockout of Qpctl disrupted monocyte homeostasis, attenuated tumor growth and reshaped myeloid cell infiltration, with loss of monocyte-derived populations with immunosuppressive and pro-angiogenic profiles. Antibody targeting of the receptor CSF1R, which more broadly eliminates tumor-associated macrophages, reversed tumor growth inhibition in Qpctl-/- mice and prevented lymphocyte infiltration. Modulation of QPCTL synergized with anti-PD-L1 to expand CD8+ T cells and limit tumor growth. QPCTL inhibition constitutes an effective approach for myeloid cell-targeted cancer immunotherapy.


Assuntos
Aminoaciltransferases , Linfócitos T CD8-Positivos , Quimiocinas , Neoplasias , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Linfócitos T CD8-Positivos/patologia , Quimiocinas/metabolismo , Imunoterapia , Infiltração Leucêmica , Camundongos , Camundongos Knockout , Monócitos , Neoplasias/imunologia
12.
J Histochem Cytochem ; 69(9): 611-615, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34353148

RESUMO

With the advent of checkpoint inhibitors, there is increasing need to study the dynamics of CD8+ T-cells in the tumor microenviroment. In this article, we describe a semi-automated method to quantify and interrogate spatial relationships between T-cells and collagenous stroma in human and mouse tissue samples. The assay combines CD8 immunohistochemistry with modified Masson's trichrome. Slides are scanned and digital images are analyzed using an adjustable MATLAB algorithm, allowing for high-throughput quantification of cytotoxic T-cells and collagen. This method provides a flexible tool for unbiased quantification of T-cells and their interactions with tumor cells and tumor microenvironment in tissue samples.


Assuntos
Antígenos CD8/análise , Ensaios de Triagem em Larga Escala , Algoritmos , Animais , Humanos , Imuno-Histoquímica , Camundongos , Microambiente Tumoral
13.
J Pathol ; 254(4): 405-417, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33723864

RESUMO

Over the past decade, invention and adoption of novel multiplexing technologies for tissues have made increasing impacts in basic and translational research and, to a lesser degree, clinical medicine. Platforms capable of highly multiplexed immunohistochemistry or in situ RNA measurements promise evaluation of protein or RNA targets at levels of plex and sensitivity logs above traditional methods - all with preservation of spatial context. These methods promise objective biomarker quantification, markedly increased sensitivity, and single-cell resolution. Increasingly, development of novel technologies is enabling multi-omic interrogations with spatial correlation of RNA and protein expression profiles in the same sample. Such sophisticated methods will provide unprecedented insights into tissue biology, biomarker science, and, ultimately, patient health. However, this sophistication comes at significant cost, requiring extensive time, practical knowledge, and resources to implement. This review will describe the technical features, advantages, and limitations of currently available multiplexed immunohistochemistry and spatial transcriptomic platforms. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Animais , Humanos
14.
Mol Cancer Ther ; 20(4): 716-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536191

RESUMO

Ovarian cancer is a diverse class of tumors with very few effective treatment options and suboptimal response rates in early clinical studies using immunotherapies. Here we describe LY6/PLAUR domain containing 1 (LYPD1) as a novel target for therapeutic antibodies for the treatment of ovarian cancer. LYPD1 is broadly expressed in both primary and metastatic ovarian cancer with ∼70% prevalence in the serous cancer subset. Bispecific antibodies targeting CD3 on T cells and a tumor antigen on cancer cells have demonstrated significant clinical activity in hematologic cancers. We have developed an anti-LYPD1/CD3 T-cell-dependent bispecific antibody (TDB) to redirect T-cell responses to LYPD1 expressing ovarian cancer. Here we characterize the nonclinical pharmacology of anti-LYPD1/CD3 TDB and show induction of a robust polyclonal T-cell activation and target dependent killing of LYPD1 expressing ovarian cancer cells resulting in efficient in vivo antitumor responses in PBMC reconstituted immune-deficient mice and human CD3 transgenic mouse models. Anti-LYPD1/CD3 TDB is generally well tolerated at high-dose levels in mice, a pharmacologically relevant species, and showed no evidence of toxicity or damage to LYPD1 expressing tissues.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Ovarianas/patologia
15.
Adv Genet (Hoboken) ; 2(1): e10036, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36618440

RESUMO

ERBB3 is a pseudokinase domain-containing member of the ERBB family of receptor tyrosine kinases (RTKs). Following ligand binding, ERBB receptors homo- or hetero-dimerize, leading to a head-to-tail arrangement of the intracellular kinase domains, where the "receiver" kinase domain of one ERBB is activated by the "activator" domain of the other ERBB in the dimer. In ERBB3, a conserved valine at codon 943 (V943) in the kinase C-terminal domain has been shown to be important for its function as an "activator" kinase in vitro. Here we report a knock-in mouse model where we have modified the endogenous Erbb3 allele to allow for tissue-specific conditional expression of Erbb3 V943R (Erbb3 CKI-V943R ). Additionally, we generated an Erbb3 D850N (Erbb3 CKI-D850N ) conditional knock-in mouse model where the conserved aspartate in the DFG motif of the pseudokinase domain was mutated to abolish any potential residual kinase activity. While Erbb3 D850N/D850N animals developed normally, homozygous Erbb3 V943R/V943R expression during development resulted in embryonic lethality. Further, tissue specific expression of Erbb3 V943R/V943R in the mammary gland epithelium following its activation using MMTV-Cre resulted in delayed elongation of the ductal network during puberty. Single-cell RNA-seq analysis of Erbb3 V943R/V943R mammary glands showed a reduction in a specific subset of fibrinogen-producing luminal epithelial cells.

16.
Nat Commun ; 11(1): 5583, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149148

RESUMO

Close proximity between cytotoxic T lymphocytes and tumour cells is required for effective immunotherapy. However, what controls the spatial distribution of T cells in the tumour microenvironment is not well understood. Here we couple digital pathology and transcriptome analysis on a large ovarian tumour cohort and develop a machine learning approach to molecularly classify and characterize tumour-immune phenotypes. Our study identifies two important hallmarks characterizing T cell excluded tumours: 1) loss of antigen presentation on tumour cells and 2) upregulation of TGFß and activated stroma. Furthermore, we identify TGFß as an important mediator of T cell exclusion. TGFß reduces MHC-I expression in ovarian cancer cells in vitro. TGFß also activates fibroblasts and induces extracellular matrix production as a potential physical barrier to hinder T cell infiltration. Our findings indicate that targeting TGFß might be a promising strategy to overcome T cell exclusion and improve clinical benefits of cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Epitelial do Ovário/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Ovarianas/imunologia , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral/imunologia , Apresentação de Antígeno/imunologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Estudos de Coortes , Metilação de DNA , Endopeptidases , Feminino , Gelatinases/metabolismo , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Aprendizado de Máquina , Proteínas de Membrana/metabolismo , Família Multigênica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico , RNA-Seq , Serina Endopeptidases/metabolismo , Células Estromais/metabolismo
17.
Nat Genet ; 52(1): 106-117, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907489

RESUMO

Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the 'venom-ome' and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 'venom-ome-specific toxins' (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery.


Assuntos
Biologia Computacional/métodos , Venenos Elapídicos/análise , Venenos Elapídicos/genética , Genoma , Naja naja/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Índia , Homologia de Sequência
18.
Breast Cancer Res ; 21(1): 152, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881983

RESUMO

BACKGROUND: PIK3CA mutations are frequent in human breast cancer. Pik3caH1047R mutant expression in mouse mammary gland promotes tumorigenesis. TP53 mutations co-occur with PIK3CA mutations in human breast cancers. We previously generated a conditionally activatable Pik3caH1047R;MMTV-Cre mouse model and found a few malignant sarcomatoid (spindle cell) carcinomas that had acquired spontaneous dominant-negative Trp53 mutations. METHODS: A Pik3caH1047R;Trp53R270H;MMTV-Cre double mutant mouse breast cancer model was generated. Tumors were characterized by histology, marker analysis, transcriptional profiling, single-cell RNA-seq, and bioinformatics. Cell lines were developed from mutant tumors and used to identify and confirm genes involved in metastasis. RESULTS: We found Pik3caH1047R and Trp53R270H cooperate in driving oncogenesis in mammary glands leading to a shorter latency than either alone. Double mutant mice develop multiple histologically distinct mammary tumors, including adenocarcinoma and sarcomatoid (spindle cell) carcinoma. We found some tumors to be invasive and a few metastasized to the lung and/or the lymph node. Single-cell RNA-seq analysis of the tumors identified epithelial, stromal, myeloid, and T cell groups. Expression analysis of the metastatic tumors identified S100a4 as a top candidate gene associated with metastasis. Metastatic tumors contained a much higher percentage of epithelial-mesenchymal transition (EMT)-signature positive and S100a4-expressing cells. CRISPR/CAS9-mediated knockout of S100a4 in a metastatic tumor-derived cell line disrupted its metastatic potential indicating a role for S100a4 in metastasis. CONCLUSIONS: Pik3caH1047R;Trp53R270H;MMTV-Cre mouse provides a preclinical model to mimic a subtype of human breast cancers that carry both PIK3CA and TP53 mutations. It also allows for understanding the cooperation between the two mutant genes in tumorigenesis. Our model also provides a system to study metastasis and develop therapeutic strategies for PIK3CA/TP53 double-positive cancers. S100a4 found involved in metastasis in this model can be a potential diagnostic and therapeutic target.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Mamárias Experimentais/etiologia , Neoplasias Mamárias Experimentais/metabolismo , Vírus do Tumor Mamário do Camundongo , Mutação , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Infecções Tumorais por Vírus/complicações , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Transformação Celular Viral , Classe I de Fosfatidilinositol 3-Quinases/genética , Modelos Animais de Doenças , Feminino , Marcação de Genes , Humanos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteína Supressora de Tumor p53/genética , Infecções Tumorais por Vírus/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nat Immunol ; 20(3): 257-264, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778250

RESUMO

Post-translational modification of chemokines mediated by the dipeptidyl peptidase DPP4 (CD26) has been shown to negatively regulate lymphocyte trafficking, and its inhibition enhances T cell migration and tumor immunity by preserving functional chemokine CXCL10. By extending those initial findings to pre-clinical models of hepatocellular carcinoma and breast cancer, we discovered a distinct mechanism by which inhibition of DPP4 improves anti-tumor responses. Administration of the DPP4 inhibitor sitagliptin resulted in higher concentrations of the chemokine CCL11 and increased migration of eosinophils into solid tumors. Enhanced tumor control was preserved in mice lacking lymphocytes and was ablated after depletion of eosinophils or treatment with degranulation inhibitors. We further demonstrated that tumor-cell expression of the alarmin IL-33 was necessary and sufficient for eosinophil-mediated anti-tumor responses and that this mechanism contributed to the efficacy of checkpoint-inhibitor therapy. These findings provide insight into IL-33- and eosinophil-mediated tumor control, revealed when endogenous mechanisms of DPP4 immunoregulation are inhibited.


Assuntos
Dipeptidil Peptidase 4/imunologia , Eosinófilos/imunologia , Interleucina-33/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimiocina CCL11/imunologia , Quimiocina CCL11/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Humanos , Interleucina-33/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/prevenção & controle , Fosfato de Sitagliptina/farmacologia
20.
J Pathol ; 247(5): 650-661, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570141

RESUMO

Tumor cell heterogeneity and tumor cell-stromal interactions are being explored as determinants of disease progression and treatment resistance in solid tumor and hematological malignancies. As such, tools simultaneously capable of highly multiplexed profiling of tissues' protein and RNA content, as well as interrogation of rare or single cells, are required to precisely characterize constituent tumor cell populations, infiltrating lymphocytes and stromal elements. Access to spatial relationships will enable more precise characterization of tumors, support patient stratification and may help to identify novel drug targets. Multiple platforms are being developed to address these critical unmet needs. The NanoString digital spatial profiling (DSP) platform enables highly multiplexed, spatial assessment of protein and/or RNA targets in tissues by detecting oligonucleotide barcodes conjugated via a photocleavable linker to primary antibodies or nucleic acid probes. Although this platform enables high-dimensional spatial interrogation of tissue protein and RNA expression, a detailed understanding of its composition, function and chemistry is advisable to guide experimental design and data interpretation. The purpose of this review is to provide an independent, comprehensive description of the DSP technology, including an overview of NanoString's capture and antibody barcode conjugation chemistries, experimental workflow, data output and analysis methods. The DSP technology will be discussed in the context of other highly multiplexed immunohistochemistry methods, including imaging mass cytometry and multiplexed ion beam imaging, to inform potential users of the advantages and limitations of each. Additional issues such as preanalytical variability, sampling and specimen adequacy will be considered with respect to the platforms to inform potential experimental design. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/patologia , RNA Neoplásico/metabolismo , Análise de Dados , Progressão da Doença , Processamento Eletrônico de Dados , Humanos , Hibridização In Situ
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...